Automatic Assessment of ASPECTS using Diffusion-Weighted Imaging in Acute Ischemic Stroke using Recurrent Residual Convolutional Neural Network

Byung Hyun Baek

Department of Radiology, Chonnam National University Hospital, Korea

The early detection and rapid quantification of acute ischemic lesions play pivotal roles in stroke management. We developed a deep learning algorithm for the automatic binary classification of the Alberta Stroke Program Early Computed Tomographic Score (ASPECTS) using diffusion-weighted imaging (DWI) in acute stroke patients. Three hundred and ninety DWI datasets with acute anterior circulation stroke were included. A classifier algorithm utilizing a recurrent residual convolutional neural network (RRCNN) was developed for classification between low (1–6) and high (7–10) DWI-ASPECTS groups. The model performance was compared with a pre-trained VGG16, Inception V3, and a 3D convolutional neural network (3DCNN). The proposed RRCNN model demonstrated higher performance than the pre-trained models and 3DCNN with an accuracy of 87.3%, AUC of 0.941, and F1-score of 0.888 for classification between the low and high DWI-ASPECTS groups. These results suggest that the deep learning algorithm developed in this study can provide a rapid assessment of DWI-ASPECTS and may serve as an ancillary tool that can assist physicians in making urgent clinical decisions.

Keywords: deep learning, diffusion magnetic resonance imaging, stroke